BASE DE DATOSUna base de datos o banco de datos es un conjunto de datos pertenecientes a un mismo contexto y almacenados sistemáticamente para su posterior uso. En este sentido, una biblioteca puede considerarse una base de datos compuesta en su mayoría por documentos y textos impresos en papel e indexados para su consulta. En la actualidad, y debido al desarrollo tecnológico de campos como la informática y la electrónica, la mayoría de las bases de datos están en formato digital (electrónico), que ofrece un amplio rango de soluciones al problema de almacenar datos.
Existen programas denominados sistemas gestores de bases de datos, abreviado SGBD, que permiten almacenar y posteriormente acceder a los datos de forma rápida y estructurada. Las propiedades de estos SGBD, así como su utilización y administración, se estudian dentro del ámbito de la informática.
Las aplicaciones más usuales son para la gestión de empresas e instituciones públicas. También son ampliamente utilizadas en entornos científicos con el objeto de almacenar la información experimental.
Aunque las bases de datos pueden contener muchos tipos de datos, algunos de ellos se encuentran protegidos por las leyes de varios países. Por ejemplo, en España los datos personales se encuentran protegidos por la Ley Orgánica de Protección de Datos de Carácter Personal (LOPD).
Objetivo de las Base de Datos Independencia lógica y física de los datos: se refiere a la capacidad de modificar una definición de esquema en un nivel de la arquitectura sin que esta modificación afecte al nivel inmediatamente superior. Para ello un registro externo en un esquema externo no tiene por qué ser igual a su registro correspondiente en el esquema conceptual.
Redundancia mínima: se trata de usar la base de datos como repositorio común de datos para distintas aplicaciones.
Acceso concurrente por parte de múltiples usuarios: control de concurrencia mediante técnicas de bloqueo o cerrado de datos accedidos.
Distribución espacial de los datos: la independencia lógica y física facilita la posibilidad de sistemas de bases de datos distribuidas. Los datos pueden encontrarse en otra habitación, otro edificio e incluso otro país. El usuario no tiene por qué preocuparse de la localización espacial de los datos a los que accede.
Integridad de los datos: se refiere a las medidas de seguridad que impiden que se introduzcan datos erróneos. Esto puede suceder tanto por motivos físicos (defectos de hardware, actualización incompleta debido a causas externas), como de operación (introducción de datos incoherentes).
Consultas complejas optimizadas: la optimización de consultas permite la rápida ejecución de las mismas.
Seguridad de acceso y auditoría: se refiere al derecho de acceso a los datos contenidos en la base de datos por parte de personas y organismos. El sistema de auditoría mantiene el control de acceso a la base de datos, con el objeto de saber qué o quién realizó una determinada modificación y en qué momento.
Respaldo y recuperación: se refiere a la capacidad de un sistema de base de datos de recuperar su estado en un momento previo a la pérdida de datos.
Acceso a través de lenguajes de programación estándar: se refiere a la posibilidad ya mencionada de acceder a los datos de una base de datos mediante lenguajes de programación ajenos al sistema de base de datos propiamente dicho.
Funciones de las Bases de Datos Codd, el creador del modelo relacional, ha establecido una lista con los ocho servicios que debe ofrecer todo SGBD.
Un SGBD debe proporcionar a los usuarios la capacidad de almacenar datos en la base de datos, acceder a ellos y actualizarlos. Esta es la función fundamental de un SGBD y por supuesto, el SGBD debe ocultar al usuario la estructura física interna (la organización de los ficheros y las estructuras de almacenamiento).
Un SGBD debe proporcionar un catálogo en el que se almacenen las descripciones de los datos y que sea accesible por los usuarios. Este catálogo es lo que se denomina diccionario de datos y contiene información que describe los datos de la base de datos (metadatos). Normalmente, un diccionario de datos almacena:
Nombre, tipo y tamaño de los datos.
Nombre de las relaciones entre los datos.
Restricciones de integridad sobre los datos.
Nombre de los usuarios autorizados a acceder a la base de datos.
Esquemas externos, conceptual e interno, y correspondencia entre los esquemas.
Estadísticas de utilización, tales como la frecuencia de las transacciones y el número de accesos realizados a los objetos de la base de datos.
Algunos de los beneficios que reporta el diccionario de datos son los siguientes:
La información sobre los datos se puede almacenar de un modo centralizado. Esto ayuda a mantener el control sobre los datos, como un recurso que son.
El significado de los datos se puede definir, lo que ayudará a los usuarios a entender el propósito de los mismos.
La comunicación se simplifica ya que se almacena el significado exacto. El diccionario de datos también puede identificar al usuario o usuarios que poseen los datos o que los acceden.
Las redundancias y las inconsistencias se pueden identificar más fácilmente ya que los datos están centralizados.
Se puede tener un historial de los cambios realizados sobre la base de datos.
El impacto que puede producir un cambio se puede determinar antes de que sea implementado, ya que el diccionario de datos mantiene información sobre cada tipo de dato, todas sus relaciones y todos sus usuarios.
Se puede hacer respetar la seguridad.
Se puede garantizar la integridad.
Se puede proporcionar información para auditorías.
Un SGBD debe proporcionar un mecanismo que garantice que todas las actualizaciones correspondientes a una determinada transacción se realicen, o que no se realice ninguna. Una transacción es un conjunto de acciones que cambian el contenido de la base de datos. Una transacción en el sistema informático de la empresa inmobiliaria sería dar de alta a un empleado o eliminar un inmueble. Una transacción un poco más complicada sería eliminar un empleado y reasignar sus inmuebles a otro empleado. En este caso hay que realizar varios cambios sobre la base de datos. Si la transacción falla durante su realización, por ejemplo porque falla el hardware, la base de datos quedará en un estado inconsistente. Algunos de los cambios se habrán hecho y otros no, por lo tanto, los cambios realizados deberán ser deshechos para devolver la base de datos a un estado consistente.
Un SGBD debe proporcionar un mecanismo que asegure que la base de datos se actualice correctamente cuando varios usuarios la están actualizando concurrentemente. Uno de los principales objetivos de los SGBD es el permitir que varios usuarios tengan acceso concurrente a los datos que comparten. El acceso concurrente es relativamente fácil de gestionar si todos los usuarios se dedican a leer datos, ya que no pueden interferir unos con otros. Sin embargo, cuando dos o más usuarios están accediendo a la base de datos y al menos uno de ellos está actualizando datos, pueden interferir de modo que se produzcan inconsistencias en la base de datos. El SGBD se debe encargar de que estas interferencias no se produzcan en el acceso simultáneo.
Un SGBD debe proporcionar un mecanismo capaz de recuperar la base de datos en caso de que ocurra algún suceso que la dañe. Como se ha comentado antes, cuando el sistema falla en medio de una transacción, la base de datos se debe devolver a un estado consistente. Este fallo puede ser a causa de un fallo en algún dispositivo hardware o un error del software, que hagan que el SGBD aborte, o puede ser a causa de que el usuario detecte un error durante la transacción y la aborte antes de que finalice. En todos estos casos, el SGBD debe proporcionar un mecanismo capaz de recuperar la base de datos llevándola a un estado consistente.
Un SGBD debe proporcionar un mecanismo que garantice que sólo los usuarios autorizados pueden acceder a la base de datos. La protección debe ser contra accesos no autorizados, tanto intencionados como accidentales.
Un SGBD debe ser capaz de integrarse con algún software de comunicación. Muchos usuarios acceden a la base de datos desde terminales. En ocasiones estos terminales se encuentran conectados directamente a la máquina sobre la que funciona el SGBD. En otras ocasiones los terminales están en lugares remotos, por lo que la comunicación con la máquina que alberga al SGBD se debe hacer a través de una red. En cualquiera de los dos casos, el SGBD recibe peticiones en forma de mensajes y responde de modo similar. Todas estas transmisiones de mensajes las maneja el gestor de comunicaciones de datos. Aunque este gestor no forma parte del SGBD, es necesario que el SGBD se pueda integrar con él para que el sistema sea comercialmente viable.
Un SGBD debe proporcionar los medios necesarios para garantizar que tanto los datos de la base de datos, como los cambios que se realizan sobre estos datos, sigan ciertas reglas. La integridad de la base de datos requiere la validez y consistencia de los datos almacenados. Se puede considerar como otro modo de proteger la base de datos, pero además de tener que ver con la seguridad, tiene otras implicaciones. La integridad se ocupa de la calidad de los datos. Normalmente se expresa mediante restricciones, que son una serie de reglas que la base de datos no puede violar. Por ejemplo, se puede establecer la restricción de que cada empleado no puede tener asignados más de diez inmuebles. En este caso sería deseable que el SGBD controlara que no se sobrepase este límite cada vez que se asigne un inmueble a un empleado.
Además, de estos ocho servicios, es razonable esperar que los SGBD proporcionen un par de servicios más:
Un SGBD debe permitir que se mantenga la independencia entre los programas y la estructura de la base de datos. La independencia de datos se alcanza mediante las vistas o subesquemas. La independencia de datos física es más fácil de alcanzar, de hecho hay varios tipos de cambios que se pueden realizar sobre la estructura física de la base de datos sin afectar a las vistas. Sin embargo, lograr una completa independencia de datos lógica es más difícil. Añadir una nueva entidad, un atributo o una relación puede ser sencillo, pero no es tan sencillo eliminarlos.
Un SGBD debe proporcionar una serie de herramientas que permitan administrar la base de datos de modo efectivo. Algunas herramientas trabajan a nivel externo, por lo que habrán sido producidas por el administrador de la base de datos. Las herramientas que trabajan a nivel interno deben ser proporcionadas por el distribuidor del SGBD. Algunas de ellas son:
Herramientas para importar y exportar datos.
Herramientas para monitorizar el uso y el funcionamiento de la base de datos.
Programas de análisis estadístico para examinar las prestaciones o las estadísticas de utilización.
Herramientas para reorganización de índices.
Herramientas para aprovechar el espacio dejado en el almacenamiento físico por los registros borrados y que consoliden el espacio liberado para reutilizarlo cuando sea necesario.
Elementos de una Base de DatosLos elementos básicos de una base de datos son:
entidades (entities)
campos (fields)
records
archivos (files)
llaves (keys)
1. Entidad – Persona, lugar, objeto u evento para el cual se obtiene y mantiene datos. Ejemplo: Cliente, Orden, Producto, Suplidor.
2. Campo – Atributo o característica de la entidad. Ejemplo: en la entidad Cliente, algunos campos pueden ser Nombre, Apellido, Dirección.
3. Record – Es una colección o grupo de campos que describen un miembro de una entidad. Ejemplo, el record de un cliente, o de un producto.
4. Archivo – Es un grupo de records que contienen datos sobre una entidad en específico. Ejemplo: el archivo de clientes, es archivo de productos, o de empleados.
5. Llave o "Key" – Es un campo que se usa para localizar, acceder o identificar un record en específico. Hay cuatro tipos de “key”:
a. "Primary key" – es un campo u combinación de campos que en forma única y mínima identifica un miembro en particular de una entidad. Es único porque no hay dos miembros con el mismo "key". Es mínimo porque contiene tan solo la información necesaria para identificar al miembro de la entidad. Si el "primary key" es una combinación de varios campos se conoce como “multivalue key".
b. "Candidate key" – cualquier campo que pueda servir como "primary key". Para seleccionar al "primary key", se escoge el campo que tenga menos datos y sea más fácil de usar. Cualquier campo que no es un "primary key" o un "candidate key" se llama "nonkey field."
c. "Foreign key" – es un cambo en un archivo que debe parear con el valor del "primary key" de otro archivo para que se pueda establecer una relación o “link” entre ambos archivos.
d. "Secondary key" – es un campo u combinación de campos que se puede usa para acceder records. Los "secondary keys" no necesitan ser únicos. Ejemplo: nombre del cliente, código postal (zipcode
SISTEMA GESTOR DE BASE DE DATOS Un Sistema Gestor de Bases de Datos (SGBD) o DBMA (DataBase Management System) es una colección de programas cuyo objetivo es servir de interfaz entre la base de datos, el usuario y las aplicaciones. Se compone de un lenguaje de definición de datos, de un lenguaje de manipulación de datos y de un lenguaje de consulta. Un SGBD permiten definir los datos a distintos niveles de abstracción y manipular dichos datos, garantizando la seguridad e integridad de los mismos.
Algunos ejemplos de SGBD son Oracle, DB2, PostgreSQL, MySQL, MS SQL Server, etc.
Objetivos• Definir una base de datos: especificar tipos, estructuras y restricciones de datos.
• Construir la base de datos: guardar los datos en algún medio controlado por el mismo SGBD
• Manipular la base de datos: realizar consultas, actualizarla, generar informes.
CaracterísticasLas características de un Sistema Gestor de Base de Datos SGBD son:
• Abstracción de la información. Los SGBD ahorran a los usuarios detalles acerca del almacenamiento físico de los datos. Da lo mismo si una base de datos ocupa uno o cientos de archivos, este hecho se hace transparente al usuario. Así, se definen varios niveles de abstracción.
• Independencia. La independencia de los datos consiste en la capacidad de modificar el esquema (físico o lógico) de una base de datos sin tener que realizar cambios en las aplicaciones que se sirven de ella.
• Redundancia mínima. Un buen diseño de una base de datos logrará evitar la aparición de información repetida o redundante. De entrada, lo ideal es lograr una redundancia nula; no obstante, en algunos casos la complejidad de los cálculos hace necesaria la aparición de redundancias.
• Consistencia. En aquellos casos en los que no se ha logrado esta redundancia nula, será necesario vigilar que aquella información que aparece repetida se actualice de forma coherente, es decir, que todos los datos repetidos se actualicen de forma simultánea.
• Seguridad. La información almacenada en una base de datos puede llegar a tener un gran valor. Los SGBD deben garantizar que esta información se encuentra segurizada frente a usuarios malintencionados, que intenten leer información privilegiada; frente a ataques que deseen manipular o destruir la información; o simplemente ante las torpezas de algún usuario autorizado pero despistado. Normalmente, los SGBD disponen de un complejo sistema de permisos a usuarios y grupos de usuarios, que permiten otorgar diversas categorías de permisos.
• Integridad. Se trata de adoptar las medidas necesarias para garantizar la validez de los datos almacenados. Es decir, se trata de proteger los datos ante fallos de hardware, datos introducidos por usuarios descuidados, o cualquier otra circunstancia capaz de corromper la información almacenada.
• Respaldo y recuperación. Los SGBD deben proporcionar una forma eficiente de realizar copias de respaldo de la información almacenada en ellos, y de restaurar a partir de estas copias los datos que se hayan podido perder.
• Control de la concurrencia. En la mayoría de entornos (excepto quizás el doméstico), lo más habitual es que sean muchas las personas que acceden a una base de datos, bien para recuperar información, bien para almacenarla. Y es también frecuente que dichos accesos se realicen de forma simultánea. Así pues, un SGBD debe controlar este acceso concurrente a la información, que podría derivar en inconsistencias.
ADMINISTRADOR DE BASE DE DATOS El administrador de base de datos (DBA) es la persona responsable de los aspectos ambientales de una base de datos. En general esto incluye:
Recuperabilidad - Crear y probar Respaldos
Integridad - Verificar o ayudar a la verificación en la integridad de datos
Seguridad - Definir o implementar controles de acceso a los datos
Disponibilidad - Asegurarse del mayor tiempo de encendido
Desempeño - Asegurarse del máximo desempeño incluso con las limitaciones
Desarrollo y soporte a pruebas - Ayudar a los programadores e ingenieros a utilizar eficientemente la base de datos.
El diseño lógico y físico de las bases de datos a pesar de no ser obligaciones de un administrador de bases de datos, es a veces parte del trabajo. Esas funciones por lo general están asignadas a los analistas de bases de datos ó a los diseñadores de bases de datos.
MODELO DE BASE DE DATOS Un modelo de base de datos o esquema de base de datos es la estructura o el formato de una base de datos, descrita en un lenguaje formal soportada por el sistema de gestión de bases de datos. En otras palabras, un "modelo de base de datos" es la aplicación de un modelo de datos usado en conjunción con un sistema de gestión de bases de datos.
Los esquemas generalmente son almacenados en un diccionario de datos. Aunque un esquema se defina en un lenguaje de base de datos de texto, el término a menudo es usado para referirse a una representación gráfica de la estructura de la base de datos.
Visión general Un modelo de base de datos es una teoría o especificación que describe como una base de datos es estructurada y usada. Varios modelos han sido sugeridos.
Modelos comunes:
Modelo jerárquico
Modelo de red
Modelo relacional
Modelo entidad-relación
Modelo objeto-relacional
Modelo de objeto
Un modelo de datos no es solamente un modo de estructurar datos, sino que también define el conjunto de las operaciones que pueden ser realizadas sobre los datos. El modelo relacional, por ejemplo, define operaciones como selección, proyección y unión. Aunque estas operaciones pueden no ser explícitas en un lenguaje de consultas particular, proveen las bases sobre las que éstos son construidos.
Modelos Varias técnicas son usadas para modelar la estructura de datos. La mayor parte de sistemas de base de datos son construidos entorno a un modelo de datos particular, aunque sea cada vez más común para productos ofrecer el apoyo a más de un modelo. Ya que cualquier varia puesta en práctica lógica modela física puede ser posible, y la mayor parte de productos ofrecerán al usuario algún nivel de control en la sintonía de la puesta en práctica física, desde las opciones que son hechas tienen un efecto significativo sobre el funcionamiento. Un ejemplo de esto es el modelo emparentado: todas las puestas en práctica serias del modelo emparentado permiten la creación de índices que proporcionan rápido acceso a filas en una tabla si conocen los valores de ciertas columnas.
Modelo de tabla El modelo de tabla consiste en una serie unica, bidimensional de elementos de datos, donde todos los miembros de una columna dada son asumidos para ser valores similares, y todos los miembros de una fila son asumidos para ser relacionados el uno con el otro. Por ejemplo, columnas para el nombre y la contraseña que podría ser usada como una parte de una base de datos de seguridad de sistema. Cada fila tendría la contraseña específica asociada con un usuario individual. Las columnas de la tabla a menudo tienen un tipo asociado con ellos, definiéndolos como datos de carácter, fecha o la información de tiempo, números enteros, o números de punto flotante.
Modelo jerárquico En un modelo jerárquico, los datos son organizados en una estructura parecida a un árbol, implicando un eslabón solo ascendente en cada registro para describir anidar, y un campo de clase para guardar los registros en un orden particular en cada lista de mismo-nivel. Las estructuras jerárquicas fueron usadas extensamente en los primeros sistemas de gestión de datos de unidad central, como el Sistema de Dirección de Información (IMS) por la IBM, y ahora describen la estructura de documentos XML. Esta estructura permite un 1:N en una relación entre dos tipos de datos. Esta estructura es muy eficiente para describir muchas relaciones en el verdadero real; recetas, índice, ordenamiento de párrafos/versos, alguno anidó y clasificó la información. Sin embargo, la estructura jerárquica es ineficaz para ciertas operaciones de base de datos cuando un camino lleno (a diferencia del eslabón ascendente y el campo de clase) también no es incluido para cada registro.
Una limitación del modelo jerárquico es su inhabilidad de representar manera eficiente la redundancia en datos. Los modelos de base de datos " el valor de atributo de entidad " como Caboodle por Swink están basados en esta estructura.
En la relación Padre-hijo: El hijo sólo puede tener un padre pero un padre puede tener múltiples hijos. Los padres e hijos son atados juntos por eslabones "indicadores" llamados. Un padre tendrá una lista de indicadores de cada uno de sus hijos.
Modelo de red El modelo de red (definido por la especificación CODASYL) organiza datos que usan dos fundamental construcciones, registros llamados y conjuntos. Los registros contienen campos (que puede ser organizado jerárquicamente, como en el lenguaje COBOL de lenguaje de programación). Los conjuntos (para no ser confundido con conjuntos matemáticos) definen de uno a varios relaciones entre registros: un propietario, muchos miembros. Un registro puede ser un propietario en cualquier número de conjuntos, y un miembro en cualquier número de conjuntos.
El modelo de red es una variación sobre el modelo jerárquico, al grado que es construido sobre el concepto de múltiples ramas(estructuras de nivel inferior) emanando de uno o varios nodos (estructuras de nivel alto), mientras el modelo se diferencia del modelo jerárquico en esto las ramas pueden estar unidas a múltiples nodos. El modelo de red es capaz de representar la redundancia en datos de una manera más eficiente que en el modelo jerárquico.
Las operaciones del modelo de red son de navegación en el estilo: un programa mantiene una posición corriente, y navega de un registro al otro por siguiente las relaciones en las cuales el registro participa. Los registros también pueden ser localizados por suministrando valores claves.
Aunque esto no sea un rasgo esencial del modelo, las bases de datos de red generalmente ponen en práctica las relaciones de juego mediante indicadores que directamente dirigen la ubicación de un registro sobre el disco. Esto da el funcionamiento de recuperación excelente, a cargo de operaciones como la carga de base de datos y la reorganización.
La mayor parte de bases de datos de objeto usan el concepto de navegación para proporcionar la navegación rápida a través de las redes de objetos, generalmente usando identificadores de objeto como indicadores "inteligentes" de objetos relacionados. Objectivity/DB, por ejemplo, los instrumentos llamados 1:1, 1:muchos, muchos:1 y muchos:muchos, llamados relaciones que pueden cruzar bases de datos. Muchas bases de datos de objeto también apoyan SQL, combinando las fuerzas de ambos modelos.
Modelo relacional El modelo relacional fue presentado por la E. F. Codd en 1970 [2] como un modo de hacer sistemas de gestión de datos más independientes de cualquier uso particular. Esto es un modelo matemático definido en términos de predicado lógico y la teoría de juego.
Los productos que son bases de datos relacionales generalmente llamadas de hecho ponen en práctica un modelo que es sólo una aproximación al modelo matemático definido por Codd. Tres términos clave son usados extensivamente en el Modelo Relacional: relaciones, atributos, y dominios. Una relación, figurativamente hablando, es una tabla con columnas y filas. El atributo, es un descriptor de la relacion, figurativamente hablando, sería el encabezado de cada una de las columnas de la tabla. El dominio de un atributo es el conjunto de valores legales que puede tomar el artibuto.
La estructura de datos básica del modelo relacional es la tabla, donde la información sobre una entidad particular (decir, un empleado) es representado en columnas y filas (también llamado tuples). Así, "la relación" en "la base de datos relacionada" se refiere a varias tablas en la base de datos; una relación es un juego de tuples. Las columnas enumeran varios atributos de la entidad (el nombre del empleado, la dirección o el número de teléfono, por ejemplo), y una fila es un caso real de la entidad (un empleado específico) que es representado por la relación. Por consiguiente, cada tuple de la tabla de empleado representa varios atributos de un empleado solo.
Todas las relaciones (y tablas) en una base de datos relacionada tienen que adherirse a algunas reglas básicas de licenciarse como relaciones. Primero, el ordenamiento de columnas es inmaterial en una tabla. Segundo, no puede haber tuples idéntico o filas en una tabla. Y tercero, cada tuple contendrá un valor solo para cada uno de sus atributos.
Una base de datos relacional contiene múltiples tablas, cada similar al que en el modelo de base de datos "plano". Una de las fuerzas del modelo relacional es que, en principio, cualquier valor que ocurre en dos registros diferentes (perteneciendo a la misma tabla o a tablas diferentes), implica una relación entre aquellos dos registros.
Una llave que puede ser usada únicamente identificar una fila en una tabla una llave primaria. Las llaves comúnmente son usadas unir o combinar datos de dos o más tablas. Por ejemplo, una tabla de Empleado puede contener una columna la Ubicación llamada que contiene un valor que empareja la llave de una tabla de Ubicación. Las llaves son también críticas en la creación de índices, que facilitan la recuperación rápida de datos de mesas grandes. Cualquier columna puede ser una llave, o múltiples columnas pueden ser agrupadas juntos en una llave compuesta. No es necesario definir todas las llaves por adelantado; una columna puede ser usada como una llave incluso si al principio no fue querido para ser el que.
una llave externa que tiene un significado en el mundo real (como el nombre de una persona, ISBN de un libro, o el número de serie de un coche) es una llave "natural". Si ninguna llave natural es conveniente (pensar en mucha gente elnombre José), un a llave arbitraria o sustituta puede ser asignada (como dando a empleados numeros ID). En la práctica, la mayor parte de bases de datos han generado ambas y llaves naturales, porque las llaves generadas pueden ser usadas internamente crear eslabones entre las filas que no pueden romperse, mientras llaves naturales pueden ser usadas, menos de fuentes fidedignas, para búsquedas y para la integración con otras bases de datos. (Por ejemplo, los registros en dos bases de datos por separado desarrolladas podrían ser correspondidos por el número de la Seguridad Social, excepto cuando los números de la Seguridad Social son incorrectos, la omisión(la acción de echar de menos), o se han cambiado).
Modelo Dimensional El modelo dimensional es una adaptación especializada del modelo relacional, solía representar datos en depósitos de datos, en un camino que los datos fácilmente pueden ser resumidos usando consultas OLAP. En el modelo dimensional, una base de datos consiste en una mesa sola grande de los hechos que son descritos usando dimensiones y medidas. Una dimensión proporciona el contexto de un hecho (como quien participó, cuando y donde pasó, y su tipo) y es usado en preguntas al grupo hechos relacionados juntos. Las dimensiones tienden a ser discretas y son a menudo jerárquicas; por ejemplo, la posición(ubicación) podría incluir el edificio, el estado, y el país.
Un indicador es una cantidad que describe el hecho, como el ingreso. Es importante que los indicadores significativamente puedan ser agregados - por ejemplo, el ingreso de ubicaciones diferentes pueden ser añadidas juntas.
En una consulta OLAP, las dimensiones son escogidas y los hechos son agrupados y añadidos juntos para crear un reporte.
El modelo dimensional a menudo es puesto en práctica sobre la cima del modelo emparentado que usa un esquema de estrella, consistiendo en una mesa que contiene los hechos y mesas circundantes que contienen las dimensiones. Dimensiones en particular complicadas podrían ser representadas usando múltiples mesas, causando un esquema de copo de nieve.
Un almacen de datos (data warehouse) puede contener múltiples esquemas de estrella que comparten tablas de dimensión, permitiéndoles para ser usadas juntas. La llegada levanta un conjunto de dimensiones estándar y es una parte importante del modelado dimensional.
Modelo de objeto En años recientes, el paradigma mediante objetos ha sido aplicado a la tecnología de base de datos, creando un nuevo modelo de programa sabido(conocido) como bases de datos de objeto. Estas bases de datos intentan traer el mundo de base de datos y el uso que programa el mundo más cerca juntos, en particular por asegurando que la base de datos usa el mismo sistema de tipo que el programa de uso. Esto apunta para evitar el elevado (a veces mencionaba el desajuste de impedancia) de convertir la información entre su representación en la base de datos (por ejemplo como filas en mesas) y su representación en el programa de uso (típicamente como objetos). Al mismo tiempo, las bases de datos de objeto intentan introducir las ideas claves de programa de objeto, como encapsulation y polimorfismo, en el mundo de bases de datos.
Una variedad de estas formas ha sido aspirada almacenando objetos en una base de datos. Algunos productos se han acercado al problema del uso que programa el final, por haciendo los objetos manipulados según el programa persistente. Esto también típicamente requiere la adición de una especie de lengua de pregunta, ya que lenguajes de programación convencionales no tienen la capacidad de encontrar objetos basados en su contenido de la información. Los otros han atacado el problema a partir del final de base de datos, por definiendo un modelo de datos mediante objetos para la base de datos, y definiendo un lenguaje de programación de base de datos que permite a capacidades de programa llenas así como instalaciones de pregunta tradicionales.
Las bases de datos de objeto han sufrido debido a la carencia de estandarización: aunque las normas fueran definidas por ODMG, nunca fueron puestas en práctica lo bastante bien para asegurar la interoperabilidad entre productos. Sin embargo, las bases de datos de objeto han sido usadas satisfactoriamente en muchos usos:Usualmente aplicaciones especialisadas como bases de datos de ingenieria, base de datos biologica molecualar, más bien que proceso de datos establecido comercial. Sin embargo, las ideas de base de datos de objeto fueron recogidas por los vendedores emparentados y extensiones influidas hechas a estos productos y de verdad a la lengua SQL.
BASES DE DATOS MAS UTILIZADAS + Interbase
+ Lenguaje SQL
+ Access
+ MySQL
+ SQL Server
+ Oracle